

Linked Lists
Part One

Outline for Today
● Linked Lists, Conceptually

● A different way to represent a sequence.
● Linked Lists, In Code

● Some cool new C++ tricks.

Changing Offices

Dr. Cynthia Lee is no
longer in room 100.

She can be found in
room 108.

The Sign on Room 100

Room
100

Room
108

Dr. Cynthia Lee is no
longer in room 108.

She can be found in
room 190.

The Sign on Room 108

Room
100

Room
108

Room
190

Dr. Cynthia Lee is no
longer in room 190.

She can be found in
room 192.

The Sign on Room 190

Room
100

Room
108

Room
190

Room
192

The Sign on Room 192

Welcome to Cynthia’s
Office!

Room
100

Room
108

Room
190

Room
192

Linked Lists at a Glance

1 2 3

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

Linked Lists at a Glance

1 2 3

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

Linked Lists at a Glance

1 2 3137

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

Linked Lists at a Glance

1 3137

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

...an empty list,
or...

a single cell… … that points at
another linked list.

A Linked List is Either…

quokka! pudu! dikdik!kudu!

Representing Linked Lists

...an empty list,
or...

a single cell... … that points at
another linked list.

A Linked List is Either…

...an empty list,
or...

a single cell... … that points at
another linked list.

A Linked List is Either…

a single cell... … that points at
another linked list.

struct Cell {
 string value;
 Cell* next;
};

Hi Mom!

struct Cell {
 string value;
 Cell* next;
};

quokka! pudu! dikdik!kudu!

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;

We just want a single cell,
not an array of cells. To
get the space we need,
we’ll just say new Cell.

Notice that list is still a
Cell*, a pointer to a cell.

It still says “look over
there for your Cell”

rather than “I’m a Cell!”

Yes, it’s confusing that C++
uses the same types to mean
“look over there for an array

of Cells” and “look over there
for a single Cell.”

list

value

next

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "pudu!";

Because list is a pointer to
a Cell, we use the arrow
operator -> instead of the

dot operator.

Think of list->value as
saying “start at list,

follow an arrow, then pick
the value field.”pudu!

list

value

next

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "pudu!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "dikdik!";
list->next->next->next = nullptr;

pudu!

list

quokka! dikdik!

value value value

next next next

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "pudu!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "dikdik!";
list->next->next->next = nullptr;

pudu!

list

quokka! dikdik!

C++ uses the nullptr
keyword to mean “a pointer

that doesn’t point at
anything.”

(Older code uses NULL instead
of nullptr; that’s also okay,

but we recommend nullptr.)

value value value

next next next

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked
list.

A Linked List is Either…

Measuring a Linked List

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked
list.

A Linked List is Either…

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked
list.

A Linked List is Either…

pudu! quokka! dikdik!

Printing a Linked List

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked
list.

A Linked List is Either…

pudu! quokka! dikdik!

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list result

quokka! dikdik!pudu!

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

list result

quokka! dikdik!pudu!

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

list result

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 cout << list->value << endl;
 list = list->next;
 }
}

list

list result

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

list result

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

Making a Minor Change

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list result

quokka! dikdik!pudu!

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

list result

quokka! dikdik!pudu!

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

list result

int main() {
 Cell* list = /* … a list … */;
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

list result

int main() {
 Cell* list = readList();
 printList(list);

 /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
 while (list != nullptr) {
 list = list->next;
 cout << list->value << endl;
 }
}

list

Crash!

Building a Linked List
(without hardcoding it)

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked
list.

A Linked List is Either…

Cleaning Up a Linked List

Endearing C++ Quirks
● If you allocate memory using the new[] operator (e.g.
new int[137]), you have to free it using the delete[]
operator.

delete[] ptr;

● If you allocate memory using the new operator (e.g.
new Cell), you have to free it using the delete
operator.

delete ptr;

● Make sure to use the proper deletion operation.
Mixing these up is like walking off the end of an
array or using an uninitialized pointer; it might
work, or it might instantly crash your program, etc.

Cleaning Up Memory
● To free a linked list, we can’t just do this:

delete list;

● Why not?

Cleaning Up Memory
● To free a linked list, we can’t just do this:

delete list;

● Why not?

list

Quokka! Dikdik!Pudu!

delete

Dynamic

Deallocation!

Cleaning Up Memory
● To free a linked list, we can’t just do this:

delete list;

● Why not?

list

Quokka! Dikdik!

First, the Wrong Way

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 // WRONG WRONG WRONG WRONG
 // WRONG WRONG WRONG WRONG

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 // WRONG WRONG WRONG WRONG
 // WRONG WRONG WRONG WRONG

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 // WRONG WRONG WRONG WRONG
 // WRONG WRONG WRONG WRONG

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

quokka! dikdik!pudu!

list

delete

Dynamic

Deallocation!

void deleteList(Cell* list) {
 // WRONG WRONG WRONG WRONG
 // WRONG WRONG WRONG WRONG

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

quokka! dikdik!

list

void deleteList(Cell* list) {
 // WRONG WRONG WRONG WRONG
 // WRONG WRONG WRONG WRONG

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

quokka! dikdik!

list

void deleteList(Cell* list) {
 // WRONG WRONG WRONG WRONG
 // WRONG WRONG WRONG WRONG

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
}

quokka! dikdik!

list

void deleteList(Cell* list) {
 // WRONG WRONG WRONG WRONG
 // WRONG WRONG WRONG WRONG

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} Undefined

behavior!

In the Land of C++, we
do not speak to the dead.

What should we do instead?

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 while (list != nullptr) {

 delete list;
 list = list->next;
 }
}

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = list->next;
 }
}

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!pudu!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!pudu!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!pudu!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

quokka! dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

dikdik!

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

list next

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

list

void deleteList(Cell* list) {
 while (list != nullptr) {
 Cell* next = list->next;
 delete list;
 list = next;
 }
}

Pointers Into Lists
● When processing linked lists iteratively, it’s

common to introduce pointers that point to
cells in multiple spots in the list.

● This is particularly useful if we’re destroying
or rewiring existing lists.

quokka! dikdik!pudu!

list next

Your Action Items
● Read Chapter 12.1 – 12.3.

● There’s lots of useful information in there
about how to work with linked lists.

● Keep Working on Assignment 6
● If you’re following our suggested timetable,

you’ll have finished the Enumerations
Warmup and Linear Probing Warmup by now.
Aim to complete Implementing Linear
Probing by Wednesday if you can.

● As always, come talk to us if you have any
questions!

Next Time
● Pointers by Reference

● Getting a helping hand.
● Tail Pointers

● Harnessing multiple pointers into a list.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

