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Outline for Today
● Linked Lists, Conceptually

● A different way to represent a sequence.
● Linked Lists, In Code

● Some cool new C++ tricks.



  

Changing Offices



  

Dr. Cynthia Lee is no 
longer in room 100.

She can be found in 
room 108.
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Dr. Cynthia Lee is no 
longer in room 108.

She can be found in 
room 190.
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Dr. Cynthia Lee is no 
longer in room 190.

She can be found in 
room 192.
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The Sign on Room 192

  

Welcome to Cynthia’s
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Linked Lists at a Glance

1 2 3

● A linked list is a data structure for storing a 
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a 

sequence.
● The end of the list is marked with some special 

indicator.
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...an empty list,
or...

a single cell… … that points at 
another linked list.

A Linked List is Either…

quokka! pudu! dikdik!kudu!



  

Representing Linked Lists



  

...an empty list,
or...

a single cell... … that points at 
another linked list.

A Linked List is Either…
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another linked list.
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a single cell... … that points at 
another linked list.

struct Cell {
    string value;
    Cell* next;
};

Hi Mom!



  

struct Cell {
    string value;
    Cell* next;
};

quokka! pudu! dikdik!kudu!



  

struct Cell {
    string value;
    Cell* next;
};

Cell* list = new Cell;

We just want a single cell, 
not an array of cells. To 
get the space we need, 
we’ll just say new Cell.

Notice that list is still a 
Cell*, a pointer to a cell. 

It still says “look over 
there for your Cell” 

rather than “I’m a Cell!”

Yes, it’s confusing that C++ 
uses the same types to mean 
“look over there for an array 

of Cells” and “look over there 
for a single Cell.”

list

value

next



  

struct Cell {
    string value;
    Cell* next;
};

Cell* list = new Cell;
list->value = "pudu!";
 
 
 
 
 

Because list is a pointer to 
a Cell, we use the arrow 
operator -> instead of the 

dot operator.
 

Think of list->value as 
saying “start at list, 

follow an arrow, then pick 
the value field.”pudu!

list

value

next



  

struct Cell {
    string value;
    Cell* next;
};

Cell* list = new Cell;
list->value = "pudu!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "dikdik!";
list->next->next->next = nullptr;

pudu!

list

quokka! dikdik!

value value value

next next next



  

struct Cell {
    string value;
    Cell* next;
};
 
Cell* list = new Cell;
list->value = "pudu!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "dikdik!";
list->next->next->next = nullptr;

pudu!

list

quokka! dikdik!

C++ uses the nullptr 
keyword to mean “a pointer 

that doesn’t point at 
anything.”

 

(Older code uses NULL instead 
of nullptr; that’s also okay, 

but we recommend nullptr.)

value value value

next next next



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked 
list.

A Linked List is Either…



  

Measuring a Linked List



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked 
list.

A Linked List is Either…



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked 
list.

A Linked List is Either…

pudu! quokka! dikdik!



  

Printing a Linked List



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked 
list.

A Linked List is Either…

pudu! quokka! dikdik!



  

int main() {
   Cell* list = /* … a list … */;
   printList(list);

   /* … other listy things. … */
}
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list result

int main() {
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   printList(list);

   /* … other listy things. … */
}

list

quokka! dikdik!pudu!

void printList(Cell* list) {
   while (list != nullptr) {
      cout << list->value << endl;
      list = list->next; 
   }
}

list
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Making a Minor Change
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Crash!



  

Building a Linked List
(without hardcoding it)



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points…

… at another linked 
list.

A Linked List is Either…



  

Cleaning Up a Linked List



  

Endearing C++ Quirks
● If you allocate memory using the new[] operator (e.g. 
new int[137]), you have to free it using the delete[] 
operator.

delete[] ptr;

● If you allocate memory using the new operator (e.g. 
new Cell), you have to free it using the delete 
operator.

delete ptr;

● Make sure to use the proper deletion operation. 
Mixing these up is like walking off the end of an 
array or using an uninitialized pointer; it might 
work, or it might instantly crash your program, etc.



  

Cleaning Up Memory
● To free a linked list, we can’t just do this:

delete list;

● Why not?
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delete

Dynamic

Deallocation!
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First, the Wrong Way



  

quokka! dikdik!pudu!
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Deallocation!
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list

void deleteList(Cell* list) {
   // WRONG WRONG WRONG WRONG
   // WRONG WRONG WRONG WRONG
 
   while (list != nullptr) {
      delete list;
      list = list->next; 
   }
} Undefined

behavior!



  

In the Land of C++, we
do not speak to the dead.

 

What should we do instead?
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Pointers Into Lists
● When processing linked lists iteratively, it’s 

common to introduce pointers that point to 
cells in multiple spots in the list.

● This is particularly useful if we’re destroying 
or rewiring existing lists.

quokka! dikdik!pudu!

list next



  

Your Action Items
● Read Chapter 12.1 – 12.3.

● There’s lots of useful information in there 
about how to work with linked lists.

● Keep Working on Assignment 6
● If you’re following our suggested timetable, 

you’ll have finished the Enumerations 
Warmup and Linear Probing Warmup by now. 
Aim to complete Implementing Linear 
Probing by Wednesday if you can.

● As always, come talk to us if you have any 
questions!



  

Next Time
● Pointers by Reference

● Getting a helping hand.
● Tail Pointers

● Harnessing multiple pointers into a list.
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