Linked Lists

Part One



Outline for Today

 Linked Lists, Conceptually

« A different way to represent a sequence.
 Iinked Lists, In Code

e Some cool new C++ tricks.



Changing Oftices



The Sign on Room 100

Dr. Cynthia Lee Is no
longer in room 100.

She can be found In
room 108.
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The Sign on Room 108

Dr. Cynthia Lee Is no
longer in room 108.

She can be found In
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The Sign on Room 190

Dr. Cynthia Lee Is no
longer in room 190.

She can be found In
room 192.
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The Sign on Room 192

Welcome to Cynthia’s
Office!




Linked Lists at a Glance

* A linked list is a data structure for storing a

sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a
sequence.

 The end of the list is marked with some special
indicator.
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Linked Lists at a Glance

* A linked list is a data structure for storing a
sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a
sequence.

 The end of the list is marked with some special
indicator.

11

S

e

O




Linked Lists at a Glance

* A linked list is a data structure for storing a

sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a
sequence.

 The end of the list is marked with some special
indicator.
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Linked Lists at a Glance

* A linked list is a data structure for storing a

sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a
sequence.

 The end of the list is marked with some special
indicator.
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A Linked ListT is Either..

.an emptly list,

or ..

O

a single cell.

guokka!

pudu!

-

. Thal points atf
another linked list,

S

S

kudu! /v dikdik! I@




Representing Linked Lists



A Linked ListT is Either..

.an empty list,
or ..
-

a single cell. . That points at
another linked list,




A Linked ListT is Either..

-

a single cell. . That points at
another linked list,




struct Cell {
string value;
Cell* next;

}s

HI Mom! >€i:j:j::;;3

a single cell. . That points at
another linked list,



guokkal

struct Cell {

}s

string value;
Cell* next;

pudul!

dikdik!
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struct Cell {
string value;
Cell* next;

}; Xf’

gell* lis’s = ‘new Cell?

We just want a single cell,
not an array of cells. To
get the space we need,

we’ll just say new Cell.

It still says
there fory
rather than “

Notice that list is still a
Cell*, a pointer to a cell.

“look over
our Cell”
I'm a Cell!”

value

list

next

Yes, it’s confusing that C++
uses the same types to mean
“look over there for an array
of Cells” and “look over there
for a single Cell.”




struct Cell {

string value;
Cell* next;

Because list is a pointer to
a Cell, we use the arrow
operator -> instead of the

dot operator.

}s

Cell* list = new Cell;

list->value = "pudu!";
value

—>| pudu!

list

next

Think of list->value as
saying “start at list,
follow an arrow, then pick
the value field.”




struct Cell {
string value;
Cell* next;

}s

Cell* list = new Cell;

list->value = "pudu!";

list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "dikdik!";

list->next->next->next = nullptr;

value value value

—>| pudu! /Jquokka! /Jdikdik!
list

next next next




struct Cell {

string value; keyword to mean “a pointer

Cell* next;
}s
Cell* list = new Cell;
list->value = "pudu!";

list->next = new Cell;

list->next->value = "quokka!";

list->next->next = new Cell;

list->next->next->value = "dikdik!";
list->next->next->next = nullptr;

value value

(Older code uses NULL instead

but we recommend nullptr.)

C++ uses the nullptr

that doesn’t point at
anything.”

of nullptr; that’s also okay,

5

value

—>| pudu! /J quokka'!
list

/J dikdik!

next next

next



A Linked List is Either..
.an emply list,
represented by
nullptr, Or..

a single linked list . at another linked
cell That points.. list,




Measuring a Linked List



A Linked List is Either..
.an emply list,
represented by
nullptr, Or..

a single linked list . at another linked
cell That points.. list,




A Linked List is Either..
.an empty list,
represenfed by
nullptr, oOvr..
-G

a single linked list . al another linked
cell that points.. list,

—f pudu! /Jquokka! /Jdikdik! /@




Printing a Linked List



A Linked List is Either..
.an empty list,
represenfed by
nullptr, oOvr..
-G

a single linked list . al another linked
cell that points.. list,

—| pudu! /Jquokka!deikdik! /@




int main() {
Cell* list = /* .. a list .. */;
printList(list);

[/* .. other listy things. .. */

}




infmain() £

[cell* list = /* . a list .. */;]
PrintLlst(List);

[/* .. other listy things. .. */

}




infmain() £

}

[cell* list = /* ..
PrintLLSt(LLSt),

[* ..

a list .. */;]

other listy things. .. */

— pudu:

j %MOkka! j

dikdik




int main().{

* =/* _a list .. */;
printList(list);

/* .. other listy things. .. */

}

— pudu: j guokkar j dikdik:




pudur

guokka!

dikdik




void printList(Cell* list) {
while (list != nullptr) {
cout << list->value << endl;
list = list->next;

}

}

pudu: j guokkar j dikdik:




vojd printlist(Cell* ligt) {

lwhtle (llst = nullptr) {
cou TSt->vatue << endl;

list = list->next;
}

}

pudu: j guokkar j dikdik:




void prlntLlst(Cell* list) {
| — nu11n+r\ f

pudur

j %MOkka !

dikdik




void printList(Cell* list) {
while (list != nullptr) {

cout << list- << endl;
[list = list->next;

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {
while (list != nullptr) {

cout << list- << endl;
[list = list->next;

}

}

pudu: j guokkar j dikdik:




vojd printlist(Cell* ligt) {

lwhtle (llst = nullptr) {
cou TSt->vatue << endl;

list = list->next;
}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {

whti:;ififi;:i:z:zi:fnl_i
cout << list->value << endl; ]

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {
while (list != nullptr) {

cout << list- << endl;
[list = list->next;

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {
while (list != nullptr) {

cout << list- << endl;
[list = list->next;

}

}

pudu: j guokkar j dikdik:




Vo . . . 1
while (list != nullptr) {

COUt << List->vatue << endl;
list = list->next;

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {

whti:;ififi;:i:z:zi:fnl_i
cout << list->value << endl; ]

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {
while (list != nullptr) {

cout << list- << endl;
[list = list->next;

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {
while (list != nullptr) {

cout << list- << endl;
[list = list->next;

}

}

pudu: j guokkar j dikdik:




Vo . . . 1
while (list != nullptr) {

COUt << List->vatue << endl;
list = list->next;

}

}

pudu: j guokkar j dikdik:




pudur

guokka!

dikdik




int main().{

* =/* _a list .. */;
printList(list);

/* .. other listy things. .. */

}

— pudu: j guokkar j dikdik:




Making a Minor Change



int main() {
Cell* list = /* .. a list .. */;
printList(list);

[/* .. other listy things. .. */

}




infmain() £

[cell* list = /* . a list .. */;]
PrintLlst(List);

[/* .. other listy things. .. */

}




infmain() £

}

[cell* list = /* ..
PrintLLSt(LLSt),

[* ..

a list .. */;]

other listy things. .. */

— pudu:

j %MOkka! j

dikdik




int main().{

* =/* _a list .. */;
printList(list);

/* .. other listy things. .. */

}

— pudu: j guokkar j dikdik:




pudur

guokka!

dikdik




void printList(Cell* list) {
while (list != nullptr) {
list = list->next;
cout << list->value << endl;

}

}

pudu: j guokkar j dikdik:




vojd printlist(Cell* ligt) {

lwhtle (llst I = nullptr) {
TS 1ST->nex

cout << list->value << endl;
}

}

pudu: j guokkar j dikdik:




list = list->next;

COUL << Llst->vatue << endl;

void printList(Cell* list) {

pudu: j guokkar j dikdik:




void printList(Cell* list) {

list = list->next;

COUL << Llst->vatue << endl;

pudur

guokka!

dikdik




void printList(Cell* list) {
while (list != nullptr) {

list = list->pnext:
[cout << list->value << endl; ]

}

}

pudu: j guokkar j dikdik:




vojd printlist(Cell* ligt) {

lwhtle (llst I = nullptr) {
TS 1ST->nex

cout << list->value << endl;
}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {

list = list->next;

Jtae << endl;

pudur

guokka!
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void printList(Cell* list) {

list = list->next;

Jtae << endl;

pudur

guokka!

dikdik




void printList(Cell* list) {
while (list != nullptr) {

list = list->pnext:
[cout << list->value << endl; ]

}

}

pudu: j guokkar j dikdik:




VOij

while (list != nullptr) {
1St = LLSt->hext,
cout << list->value << endl;

}
}

pudu: j guokkar j dikdik:




void printList(Cell* list) {

list = list->next;

Jtae << endl;

pudur

guokka!

dikdik




void printList(Cell* list) {

list = list->next;

Jtae << endl;

pudur

guokka!

dikdik




void printList(Cell* list) {
while (list != nullptr) {

list = list->pnext:
[cout << list->value << endl; ]

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {
while (llst = nullptr) {

list = -
cout <<| list->value |<< endl;

}

}

pudu: j guokkar j dikdik:




void printList(Cell* list) {
while (list != nullptr) {
list = list->next;
cout <<[list->value]<< endl;

}

}

pudu: j guokka! j dikdik:




Building a Linked List



A Linked List is Either..
.an emply list,
represented by
nullptr, Or..

a single linked list . at another linked
cell That points.. list,




Cleaning Up a Linked List



Endearing C++ Quirks

 If you allocate memory using the new[] operator (e.g.
new int[137]), you have to free it using the delete[]
operator.

delete[] ptr;

 If you allocate memory using the new operator (e.g.
new Cell), you have to free it using the delete
operator.

delete ptr;

« Make sure to use the proper deletion operation.
Mixing these up is like walking off the end of an
array or using an uninitialized pointer; it might
work, or it might instantly crash your program, etc.



Cleaning Up Memory

* To free a linked list, we can’t just do this:
delete list;
 Why not?



Cleaning Up Memory

* To free a linked list, we can’t just do this:
delete list;
« Why nt?

B Quokka! 4>| Dikdik: 4,®




Cleaning Up Memory

* To free a linked list, we can’t just do this:
delete list;
 Why not?
~ ™ ~ ™

list
Quokka! 4>| Dikdik: 4>®




First, the Wrong Way



void deletelList(Cell* 1list) {
// WRONG WRONG WRONG WRONG
/] WRONG WRONG WRONG WRONG

while (list != nullptr) {

delete list;
list = list->next;
}

} list




void deletelList(Cell* 1list) {
// WRONG WRONG WRONG WRONG
/] WRONG WRONG WRONG WRONG

lwhile (list != nullptr) {

list = list->next;
}
} list




void deletelList(Cell* 1list) {
/] WRONG WRONG WRONG WRONG
/] WRONG WRONG WRONG WRONG

wh1 (1ist '= qullptr) {
delete list;
= —>next;

}
} list




void deletelList(Cell* 1list) {
/] WRONG WRONG WRONG WRONG
/] WRONG WRONG WRONG WRONG

whi (list '= qullptr) {
idelete list;!
= —>next;
}
P sty

delete




void deletelList(Cell* 1list) {
/] WRONG WRONG WRONG WRONG
/] WRONG WRONG WRONG WRONG

wh1 (1ist '= qullptr) {
delete list;
= —>next;

}
} list




void deletelList(Cell* 1list) {
/] WRONG WRONG WRONG WRONG
/] WRONG WRONG WRONG WRONG

while (list != nullptr) {
delete list:

[list = list->next;]

}
} list




void deletelList(Cell* 1list) {
// WRONG WRONG WRONG WRONG
/] WRONG WRONG WR

}

while (
1.

}

'

A

4

ndeﬁ“
beha"“’

guokka!
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dikdik
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In the Land of C++, we
do not speak to the dead.

What should we do instead?



void deletelList(Cell* 1list) {
while (list != nullptr) {

delete list;
list = list->next;
}
}




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;
delete list;
list = list->next;

}

}




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;

}

}




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;

}

}




voj i * L
while (list != nullptr) {

Cell™ next = (1st->next,
delete list;
list = next;

}

}




void deletelList(Cell* 1list) {

wh =
Cell* next = list->next;

list = next;

}

}




void deletelList(Cell* 1list) {

wh =
Cell* next = list->next;

list = next;

}

}




void deletelList(Cell* 1list) {

while (list != nullptr) {
Cell* pnext = list->next;
delete list;

3




void deletelList(Cell* 1list) {

while (list != nullptr) {
Cell* pnext = list->next;
delete list;

3




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;

|list = next;l

}
}




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;

|list = next;l

}
}




void deletelList(Cell* 1list) {
while (list != nullptr) {

Cell* next = list->next;

delete list;

list = next;




void deletelList(Cell* 1list) {
while (list != nullptr) {

Cell* next = list->next;

delete list;

list = next;

dikdik

> quokka! j




voj i * L
while (list != nullptr) {

Cell™ next = (1st->next,
delete list;
list = next;

}

}

> quokka: j dikdik:




void deletelList(Cell* 1list) {

wh =
Cell* next = list->next;

list = next;

}

}

> quokka: j dikdik:




void deletelList(Cell* 1list) {

wh =
Cell* next = list->next;

list = next;

}

}




void deletelList(Cell* 1list) {

while (list != nullptr) {
Cell* pnext = list->next;
delete list;

3




void deletelList(Cell* 1list) {

while (list != nullptr) {
Cell* pnext = list->next;
delete list;

3




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;

llist = next;l

}
}




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;

llist = next;l

}
}




void deletelList(Cell* 1list) {
while (list != nullptr) {

Cell* next = list->next;

delete list;

list = next;




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;

dikdik




Vo1

}

|l ist(Cell* 1ist)
while (list != nullptr) {

delete list;
list = next;
}

dikdik




void deletelList(Cell* 1list) {

wh =
Cell* next = list->next;

list = next;

}

}

» dikdik!




void deletelList(Cell* 1list) {
wh1 ' | =
Cell* next = list->next;

3

list = next;

}

}

dikdik




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* pnext = list->next;
delete list;

3
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void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* pnext = list->next;
delete list;

3




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;

|list = next;l

}

}




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;

|list = next;l

}

}




void deletelList(Cell* 1list) {
while (list != nullptr) {

Cell* next = list->next;

delete list;

list = next;




void deletelList(Cell* 1list) {
while (list != nullptr) {

Cell* next = list->next;

delete list;

list = next;




Vo1

}

|l ist(Cell* 1ist)
while (list != nullptr) {

delete list;
list = next;
}




void deletelList(Cell* 1list) {
while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;
}

}




Pointers Into Lists

« When processing linked lists iteratively, it’s
common to introduce pointers that point to
cells in multiple spots in the list.

» This is particularly useful if we’re destroying
or rewiring existing lists.

list

pudur

next

guokkar

J

dikdik:

J
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Your Action Items

* Read Chapter 12.1 - 12.3.

e There’s lots of useful information in there
about how to work with linked lists.

 Keep Working on Assignment 6

 If you're following our suggested timetable,
you’ll have finished the Enumerations
Warmup and Linear Probing Warmup by now.
Aim to complete Implementing Linear
Probing by Wednesday if you can.

* As always, come talk to us if you have any
questions!



Next Time

 Pointers by Reference
* Getting a helping hand.
* Tail Pointers

 Harnessing multiple pointers into a list.
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